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Summary 

A computer program for the simulation of experiments intended to determine the order of a reaction is presented along with a 
discussion and evaluation of the important parameters for the reaction order analysis. The source code is written in C. The 
program calculates the maximum acceptable amount of reactant remaining at the last sampling point for the estimation of the 
correct reaction order with a level of significance of 0.95. Based upon the simulations, the precision of the analytical method was 
shown to be more important than the number of samples in determining the correct order of the reaction at an early stage. The 
simulations also showed that even with good analytical methods (SD = LO%), the reaction had to be followed for about one 
half-life (tlJ of the reactant. A sampling scheme with equal times between sampling was found to be as good as a scheme with 
equal differences between the measured concentrations. This is due to the lack of correlation between the rate of reaction and 
differences between the course of reaction predicted by the two reaction orders. When the experimental errors are expected to be 
normally distributed, the use of integer orders is preferred over a model employing decimal orders due to the increase in speed of 
the simulations. 

Introduction 

Mathematical models describing the kinetics 
of chemical reactions employ the concept of reac- 
tion orders for the calculation. Basically the term 
is supposed to indicate the number of molecules 
taking part in a reaction, and is thus considered 
to be an integer. However, for complex reactions 
and reactions of higher orders where only one of 
several reacting species is determined, orders 
given as integers do not suffice. In a previous 
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paper, a mathematical model for this purpose 
was presented (Sande and Karlsen, 1991): 

with the half-life 

T 1,2=C;-X.(2X-1-l)/k(~-l) 

C, is here the concentration of unreacted sub- 
stance at time I, C, denotes the initial concentra- 
tion, k is a rate constant and x represents the 
order of the reaction. The model is valid with 
some restrictions for all orders, except x = 1. For 
first order reactions (x = 1) the usual equations: 

C, = CO*ePkr 
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with the half-life 

T l/2 = W) /k 

apply. 
This model may also be employed for elemen- 

tary reactions where the order is known to be an 
integer, but where the actual order is unknown. 
However, due to analytical errors, fitting the 
model to experimental data will usually not pro- 
duce an integer order as best fit. The purpose of 
this paper is to examine the factors influencing 
the determination of the correct order of a reac- 
tion through simulation, thereby enabling better 
experimental design and differentiation between 
competing orders. 

Theory 

The main parameter affecting the calculation 
of the order of a given reaction is the extent of 
time the reaction is followed. As stated by several 
authors (e.g., Taylor et al., 1987; and Yang, 19811, 
following the reaction for too short a period (e.g., 
until less than 25% decomposed) makes the dif- 
ferentiation between reaction orders impossible, 
and therefore the calculation of the reaction or- 
der ambiguous. The reason is that the differences 
between the course of the reaction predicted by 
the different orders are too small. All parameters 
of the model will influence the speed of degrada- 
tion. As a general discussion on this subject it is 
thus preferable to employ the amount of sub- 
stance remaining (or amount reacted) instead of 
the time after the start of the reaction, thereby 
eliminating the need to specify values for C, and 
k. 

Other factors which may influence the differ- 
entiation between different reaction orders are: 

The order of the reaction itself (xl: The differ- 
ence between the degradation profiles predicted 
by second and third order is less than that be- 
tween zero and first order. Consequently, it is 
more difficult to differentiate between second 
and third order reactions than between zero and 
first order reactions. 

The magnitude of difference in the reaction 
order one wishes to determine: For elementary 
reactions this would be 1. For complex reactions 
other figures could be relevant. 

The time scheme of sampling: The sampling 
scheme most frequently used in kinetic studies is 
a scheme providing equal spacing between the 
measured concentrations during the experiment. 

This means frequent sampling at the start of 
the experiment, becoming less frequent as degra- 
dation proceeds. An alternative is sampling at 
equally spaced times. We have investigated both 
types of sampling schemes. 

The number of samples drawn during the reac- 
tion. 

The precision of the analytical method em- 
ployed. 

We found it most reasonable to investigate the 
differentiation between a first order reaction and 
zero and second order reaction, respectively. 
Based on this supposition it is possible to con- 
struct tables for a given number of samples vs 
analytical precision showing the maximum ac- 
ceptable amount of reactant remaining in the last 
sample in order to determine the correct reaction 
order with a satisfactory degree of significance. 

Calculations 

The calculations are outlined as follows: Start- 
ing out with the generation of a perfect first 
order course of reaction from 100 to 1% of reac- 
tant with a given number of samples at equal 
time intervals (e.g., 61, normally distributed ran- 
dom errors were imposed on the samples, thereby 
simulating a real analysis. The standard deviation 
of the random errors corresponded to the preci- 
sion of our fictitious analytical method. The gen- 
eral model was then fitted to the generated set of 
data producing a calculated order of the reaction. 
This procedure was then repeated a predeter- 
mined number of times, thereby determining the 
expected distribution of the calculated reaction 
orders. 

Since we followed the entire course of the 
reaction, we would expect the distribution to be 



narrow and close to the correct value of the 
reaction order. The procedure was therefore re- 
peated for a course of the reaction from 100 to 
2% remaining reactant, thus producing a some- 
what broader distribution, then from 100 to 3%, 
etc. Sooner or later a minimum concentration 
c mn is reached where the distribution of the 
calculated reaction orders is so broad that it is 
not significantly different from a zero or second 
order reaction. As a condition for the level of 
significance we chose: the estimated reaction or- 
ders should equal the correct reaction order (i.e., 
1) in 95% of the calculations. The previous value 
of c, is thus the concentration limit to which an 
analysis has to be carried out in order to deter- 
mine the correct reaction order with the given 
level of significance. A flow chart for the evalua- 
tion is given in Fig. 1. 

A question that must be addressed is the crite- 
rion for an excessively broad distribution, i.e., 
what are the results from the curve fitting that 
would lead to erroneous conclusions? 

Two different approaches are possible. In both 
cases, we have to follow the reaction long enough 
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so that the results are within the limits in 95% of 
the simulations: 
(1) A reaction is considered a first order reaction 

if the, order with minimum squared sum of 
residuals (SSR) for fitting of the general 
equation is greater than or equal to 0.5 and 
less than 1.5. 

(2) Fitting of the model is performed only for 
integer orders and the order with the least 
squared sum of residuals is chosen as the 
assumed correct order. 

Method 2 corresponds to the traditionally em- 
ployed procedure for fitting the data to the possi- 
ble models for the integer orders and choosing 
the one showing the best fit either using graphical 
techniques (linear regression) or other methods. 

When the distribution of SSR vs reaction or- 
der for a data set is symmetrical around the 
minimum, these two methods produce equal re- 
sults. For other distributions it is conceivable 
that, e.g., the best fit decimal order is 0.4 and the 
SSR for a first order reaction is less than the SSR 
for a zero order reaction. In this case, determina- 
tion of which order to choose would have to be 
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Fig. 1. Flow-chart describing estimation of C,, by simulation of a degradation reaction. 
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Fig. 2. C,, vs number of samples for methods of analysis with 1, 2.5 and 5% SD, and a sampling scheme with equal difference 
between sample time. (0 ) Using integer orders; ( n 1 using decimal orders. 

based on additional information (e.g., chemical The next question that has to be considered is 
structure). Method 1 is thus a more general ap- the number of simulated data sets necessary to 
preach yielding more consistent results. In our obtain a good picture of the limits. 100 data sets 
case we decided to try both methods to evaluate give a rough estimate, and 1000 give a good 
any possible differences. estimate. The only upper limit for the calcula- 
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Fig. 3. C,, vs number of samples for methods of analysis with 1, 2.5 and 5% SD, and a sampling scheme with equal difference 
between sample concentration. (0 1 Using integer orders; ( n ) using decimal orders. 
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tions is the time required to complete the simula- 
tion, and is therefore dependent on the computer 
capacity available. We chose the simulation of 
500 data sets as a reasonable compromise. 

The outline of the source code for a computer 
program in C performing the necessary calcula- 
tions is given in the Appendix. 

A caveat is required regarding the random 
error generator. With 500 data sets and 20 points 
per data set the number of random errors re- 
quired is 10000. If the numbers generated are 
correlated too much an optimum random distri- 
bution of the errors is not acquired. An in-depth 
discussion on the subject along with proper source 
code for an error generator has been described 
by Press et al. (1988) 

Simulation 

Based upon the considerations described above 
the following simulations were performed: 

For all simulations the number of data sets 
employed was 500. The precisions of the fictive 
analytical method were 1, 2.5 and 5%. The num- 
ber of generated points for each simulated analy- 
sis ranged from 6 to 20. 
Simulation 1: Using the general model for curve 

fitting, and a sampling scheme with 
equal time spacing. 

Simulation 2: Using integer orders for curve fit - 
ting, and a sampling scheme with 
equal time spacing. 

Simulation 3: Using the general model for curve 
fitting, and a sampling scheme pro- 
ducing equal differences between 
the sample concentrations. 

Simulation 4: Using integer orders for curve fit - 
ting, and a sampling scheme pro- 
ducing equal differences between 
the sample concentrations. 

Results and Discussion 

As can be seen from Figs 2 and 3, the results 
from the four different simulations showed only 
insignificant differences. In summary, the reac- 

tions had to be followed until 50-60% remaining 
using a method of analysis with SD of l%, until 
30-40% remaining using a method of analysis 
with SD of 2.5% and until lo-20% remaining 
using a method of analysis with SD of 5%. Using 
less than nine points renders the order of the 
reaction indeterminant with the least precise 
method of analysis. 

Increasing the number of samples from 6 to 20 
had a marked influence on the results by a near 
linear increase in C,, by 10 units, however, the 
most important parameter was the precision of 
the method of analysis by an increase in C,, by 
20 units by halving the SD. This emphasizes the 
importance of optimizing the method of analysis 
(i.e., choosing the best analytical method), since 
compensating for a poor analytical method by 
increasing the number of samples analyzed is 
only possible to a limited extent. 

Due to the fewer number of curve fittings 
required for integer orders (simulations 2 and 4) 
this method used only 2/3 of the time required 
for simulation 1 and 3. The time required for the 
simulation of 500 data sets with an error SD of 1 
and number of generated points from 6 to 20 on 
a Intel 386 SX, 16 MHz computer equipped with 
a mathematical coprocessor is 50 min. 

The lack of difference between the results 
from the two methods for fitting the model to the 
data (decimal vs integer orders) indicates a sym- 
metric distribution of SSR vs order of reaction 
for the type of errors used in this simulations. 
Due to the higher speed of calculation, employ- 
ing integer orders is preferred for this type of 
simulations. For the estimation of reaction orders 
from real analysis we recommend the general 
model for the reasons described above (see Cal- 
culation). 

The simulations demonstrate that a sampling 
scheme with more frequent sampling at the start 
of the reaction does not provide any advantages 
with respect to the calculation of correct reaction 
order over a scheme with samples taken at con- 
stant time intervals. This is probably due to the 
fact that the differences between the functions 
predicted by the two reaction orders are evenly 
distributed over the sampling period, i.e., there is 
no correlation between the rate of the reaction 
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and the differences between the reaction courses. 
Due to the lack of differences we may conclude 
that the points of time for the measurements 
have less influence on the calculated reaction 
order than the number of points measured, as 
long as the points are reasonably spread out in 
time. 

It is necessary to emphasize that this conclu- 
sion is only valid with respect to the calculation of 
reaction order. When the reaction order is known, 
and the purpose of curve fitting is to determine 
the kinetic parameters (C, and k), more frequent 
sampling at the initial stages is recommended. 

The simulations employ normally distributed 
random errors. We have thereby assumed the 
errors introduced to be purely random. However, 
in analytical laboratories there are also other 
types of errors, e.g., systematic and outliers (er- 
rors which should not occur according to the 
normal distribution). Systematic errors will only 
affect the determination of reaction order to a 
limited extent, whereas outliers may distort a 
curve completely. It would therefore be wise to 
interpret these results as guidelines to the con- 
centrations to which extent the reaction at least 
has to be followed in order to determine the 
order of the reaction. 

If the reaction orders calculated using the gen- 
eral model were normally distributed, the stan- 
dard deviation could have been used as a better 
measure for the broadness of the distribution. 
The SD would have to be less than 0.25 (2. SD < 
0.5). However, the actual distribution of the esti- 
mated orders can not be determined a priori. 
Evaluation of 1000 calculated reaction orders 
showed a slightly negative skewness of the distri- 
bution (mean, 1.02; skewness, -0.19; curtosis, 
-0.04). We therefore had to count ‘erroneous’ 

Appendix 

estimates corresponding to the method using in- 
teger orders. 

It is interesting to note that also with very 
precise methods of analysis, the reaction has to 
be followed for about one half-life (t,,,). This is 
a problem if the products of a reaction react with 
the primary substance or alter the original reac- 
tion, which is often the case with photochemical 
reactions (Moore, 1987). In such reactions it is 
probably better to use methods other than the 
reaction order to determine the mechanism and 
kinetics of the degradation. 

We have chosen to differentiate between first 
order reactions and zero and second order, but 
the principles described are also generally appli- 
cable with other orders of reaction and differ- 
ences. Minor alterations in the source code will 
allow simulation of other differentiations desired. 

Conclusion 

The main important parameter in determining 
the order of a reaction is the precision of the 
method of analysis. 

When the experimental errors may be ex- 
pected to be normally distributed, the use of 
integer orders is preferred due to the increase in 
speed of the simulations (simulation 2). It should 
be emphasized, however, that in the fitting of the 
model to real experimental values, decimal orders 
of reaction should be used due to the increased 
information gained by the display of the distribu- 
tion of the SSR over the range of reaction orders 
studied. 

The design of the sampling scheme has little 
influence on the estimated reaction order. 

Outline of the source code for a computer program in C estimating C,, for a given analytical precision, and 
number of samples from 6 to 20 
#include (stdi0.h) 
#include (std1ib.h) 
#include (math.h) 
#include (fl0at.h) 
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#define MAX - PKT 21 
#define NUMSIM 500 /* Simulate 500 data sets for each 

nopt and Cmn*/ 

/ * GLOBAL DEFINITIONS * / 
struct parset { double order,ratek,Co,SSR; }; 
struct linpars { double alfa,beta; 1; 

/ *FUNCTIONS * / 
/**********************************************************/ 

double time _ calc(struct parset * pars,double con4 

/* The function calculates the time corresponding to a 
given concentration for the parameters given in pars * / 

( /* See Sande and Karlsen, 1991* / 
1 

/***********************************************$***********/ 

double conc_calc(struct parset * pars,double tim) 

/* The function calculates the concentration 
corresponding to a given time (timjfor the parameters given in pars * / 

1 /* See Sande and Karlsen, 1991* / 
1 

/**********************************************~***********/ 

struct linpars * wlinreg(double * x,double * y,double * wjnt np) 

/* The function calculates the slope (beta) and intercept (alfa) from the np points 
in the arrays x,y and w (x-value, y-value and weight) using general weighted 
linear regression. Return value is a pointer to a structure containing alfa and beta * / 

1 /* See Sande and Karlsen, 1991* / 
] 

/**************************************************************/ 
struct parset * linfitcdouble * tval, double * cval, double ordr, int nopt) 

/* The function calculates the best fit parameters and 
Squared Sum of Residuals for the data and order * / 

I /* See Sande and Karlsen, 1991* / 
] 

/*******************************************~****************/ 
double ordcalc(double * timeval,double * conc,int no-of -points) 

/* The function calculates the best fit order of the 
reaction * / 

{ double tmpdb; 
int i; 
struct parset ordarr[51; 

/ * * * * * * * Calculating integer orders * * * * * * * / 
tmpdb = 0.0; 
ordarr[O] = * linfit(timeval,conc,tmpdb,no _ of -points); 
for (i = 1;i < 3;i + + ) 
1 tmpdb = i; / * converting i to type double * / 

ordarr[i] = * linfit(timeval,conc,tmpdb,no _ of _ points); 
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if Cordarr&].SSR > ordarrli-t &SRI 
/ * No need for comparing orders * / 

return (ordarr[i-lI.order); 
.J’ * i.e. return when bottom found * / 

return (ordarr[iJ.order); / * return 2 if no convergence * / 
/******************/ 
/ * + For ea~~u~atjo~ of decimal orders, 
* replace the source above with : 
* 

* * Since we are not interested in the AcprVa calculated order, 
* 
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double timeval[MAX - PKT],conc[MAX - PKTl,errconc[MAX - PKTI; 
struct parset midl; 

/ * INITIALIZING * / 
deltaorder = 1.0; 

/* Co fixed to 100 (%) and ratek to 1 * / 
midlratek = 1.0; 
midl.Co = 100.0; 
midl.order = l.O;midl.SSR = 0.0; 

printf(“ \ nGive SD for the analysis in”);putchar(‘%‘); 
printf(“ of Co:“);scanf(“%lf”,& SDanal); 
SDanal = SDanal * midl.Co/lOO.O; 
printf(” \ nGive a SEED:“);scanf(“%d”,&orgseed); 
if (orgseed > 0) orgseed * = - 1; if (orgseed = = 0) orgseed = - 1; 
/ *original seed must be negative in order to restart the random series * / 

printf(“ \ nNo of sim:500,seed:%d”,orgseed); 
printf(“ \ nstandard deviation for analysis:%f ‘,SDanal); 
printf(“ \ n \ n The reaction must be followed”); 
printf(“ to the given percent REMAINING”); 
printf(“ \ n to determine %2.0f.order”,midl.order); 
printf(“reactions with + / - %3.lf accuracy:“,deltaorder); 
printfc‘ \ nno of points Cmn 9; 

Cmn = 0.0; 
for (nopt = 6;nopt < MAX - PKT,nopt + + > 

{ NoERR=O; 
if (Cmn > S)Cmn- = 5; 
/ *To reduce the effect of erroneous high Cmn levels * / 
while (NOERR < NUMSIM/20) /*Max. 5% ERRORS * / 

1 Cmn + = midl.Co/lOO.O; 
/***************************************************~*****\ 
\ * Equally CONCENTRATION-spaced samples: */ 

for(i = 0;i < nopt;i + + ) 
/ * Initialize cone and timeval * / 

I conc[i] = midl.Co-((midl.Co-Cmn)/(nopt-1) * i); 
timeval[i] = time - calc(&midl,conc[i]); 

] 
/*************************************************************\ 
* * For equally TIME-spaced samples * 
* replace the source above with: ** 
* minTIME = time - calc(&midl,Cmn); * 
* * * Calculate time for last sample * * * 
* for(i = 0;i < nopt;i + + > * Initialize cone and timevalue * 
* { timeval[i] = minTIME/(nopt-1) * i; * 
* conc[il = cone - calc(&midl,timeval[i]); * 
* ] * 
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\*********************************************************/ 

NoERR = 0; 
for(i = O;j < NUMSIM;j + + 1 

{ if (i = = 0) seed = orgseed; 
/ * Initialize random number * / 

/ * Introduce a normally distributed error in the calculated cont. * / 
for (i = 0;i < nopt;i + + 1 

(errconc[il = conc[il + (gausdev@seed) * SDanal); 
if (errconc[i] < = 0.0) errconc[i] = DBL - MIN; 

1 
bestorderb] = ordcalc(timeval,errconc,nopt); 
if((bestorderb] < 0.5) I I (bestorderb] > = 1.5)) 

NoERR + + ; / * Count errors * / 

printf(“.“); 
); /*end while NoERR <5%*/ 

Cmn- = 1.0; 
/ * NoERR too large, report previous value for Cmn * / 

printfc“ \ n %2i %7.0f ‘,nopt,Cmn); 
}; / * Cmn evaluated for nopt from 6..MAX - PKT * / 
exit(O); 

1 
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